一、前言 前阵子写了几篇大模型开发相关的入门的文章,然后有同学私信说自己训练或者微调出来的模型效果不如预期,对于这一点,我在前面的文章里也反复强调过多次,对于大模型来说,唯一真正有价值的只有:数据。脸书扎克伯格花大价钱ScaleAI的底层逻辑也在于此。 在现在这个时代,完全可以说,大部分的技术都是没有什么价值的,因为大部分的技术都是有手就行。真正的价值都在数据,而且最有价值的数据往往都是一个个的专业领域的数据,决定大模型微调效果的是数据,决定你整个产品成败的也是数据,这个事情一定要搞清楚。所以呢,建议大家从现在开始,给自己好好做积累吧,把你的行业数据、专业领域的数据一点点积累好,这才是你的未来。 而数据中最重要的还是实际的业务数据,并不是让大模型帮你生成的数据,但是如果你是为了做一些项目的测试的话,让大模型来帮忙丰富一下你的数据集也是一个不错的选项。这里就用我自己的一个实际的用于语音助手的案例,来手把手教你如何利用大模型来帮你生成一些数据。 【有手就行】大模型开发入门系列 二、让大模型帮忙生成训练集 之前用的更多的是利用ChatGPT来生成数据,但是为了写这篇文章,我又专门用千问、文心、豆包、ChatGPT走了一遍完整流程。这篇文章主要有用的就是生成数据的提示词,顺便用这个实例介绍对比一下几个主流模型的表现,供大家参考。 从这一轮次的的测试生成数据集的情况来看,印象分最好的要算Qwen3-Max,而ChatGPT则垫底了。看来中文还是得选中国的大模型。另外,犹记当年第一届世界人工智能大会时,马云跟马斯克吹牛:AI就是Alibaba Intelligent,这牛吹的当年所有人都想笑,再过几年看看Alibaba到底能不能笑傲江湖,让咱们座目以待。 此外,具体每个大模型生成的数据由于太大,在这里我就不列了,不过我保存到了云盘,感兴趣的可以后台私聊我:【测试集】,会自动回复下载链接,同时你也可以自行生成。 1. 千问 使用模型:Qwen3-Max 秒级响应。刺溜一下就给生成好了。而且是一步到位,不像豆包、文心那样,先生成数据,再自己写代码把数据保存到一个json文件。千问牛逼格拉斯。不过,生成的json文件在公司不能下载(在家里正常),可能跟公司网络DNS有关。 生成的文字多样性佳: 2. 百度文心一言 使用模型:文心大模型X1.1 为每个意图生成50条数据很快,但是文心一言为了将结果保存到json文件费了老大的劲,因为它是自己写代码来实现的,而它写的代码执行的报错了好多次,然后它自己一直在改它自己的代码,结果浪费了很多时间,XD 生成的文字多样性: 但是它在这个请求里自己生成的代码出问题,扣掉了我对它的印象分。 3. 豆包 使用模型:豆包上没写版本号,公有云的反正是最新的。 豆包-同文心,也是自己写代码生成json,比百度好一点,保存json的代码一次成功,没有改半天代码。生成的文字多样性也不错。槽位的准确率100%。它相比文心好的地方就是保存json的代码一次成功,没让我等半天。 生成的文字多样性: 4. ChatGPT 使用模型:普通版本(非Business版本) For quick tasks & answers 速度跟豆包差不多。思考过程在生成后不能查看,所以不清楚是跟千问一样,一步到位,还是跟豆包、文心一样,先生成数据,再写代码存文件。 生成的文字的多样性: 三、注意事项 如果你生成数据的目的是为了训练的话,建议的做法还是要用一些实际的数据,而不是找大模型来帮你生成数据,这一点很重要。但是如果你是为了学习大模型训练或者大模型微调的话,可以考虑让大模型帮你生成一些数据,但仅限于学习。毕竟,大模型生成的数据都不一定是真正你的产品、业务所需要的数据。 四、广而告之 新建了一个技术交流群,欢迎大家一起加入讨论。扫码加入AI技术交流群(微信)关注我的公众号:奥德元让我们一起学习人工智能,一起追赶这个时代。
数据集
1 post