今天的这个测试是因为上周用Open WebUI搭了一个简易的知识库(具体看我上周发的那篇文章),然后产品感兴趣了,再来用Dify这个相对企业级、产品级的系统来正式搭一个企业知识问答系统而做的测试。由于需求是从LLM大模型、Embedding模型、Rerank模型,以有Dify平台全套都必须是私有化部署,且不能使用Docker,全部是手动代码部署,因此,整个过程较复杂,也走了一些弯路,所以整个内容篇幅较长。为省流,直接上结论。 一、省流:关键结论速览 结论 需注意的是,Open WebUI 和 Dify 目前所使用的 embedding 模型不同,这是造成测试结果存在差异的一个重要因素。 测试体验环境 二、现状与挑战:Open WebUI 知识库的局限 前期,我们基于 Open WebUI 搭建了一个简易的知识库。但由于 Open WebUI 并非专业用于知识问答的平台,其功能较为简陋,难以满足企业级产品的知识问答需求: 针对以上种种问题,经过与两位领导的初步讨论,我们启动了对 Dify 的预研工作,期望借助 Dify 的工作流机制来解决 Open WebUI 知识库存在的这些问题。 三、Dify 的解决方案:灵活性与强大功能的结合 Dify 的强大之处在于其高度的灵活性,主要体现在智能体和工作流两个方面: 四、Dify 部署之路:挑战与进展并存 在对 Dify 的优势进行充分了解后,我们来看看当前的部署进展情况。目前,Dify 的演示环境已经搭建完成,但在使用和优化方面仍有许多工作需要进一步探索。 整个部署过程并非一帆风顺。由于没有实体服务器,我们在 AutoDL 上租用了一台虚拟机进行部署。但由于 AutoDL 虚拟机存在诸多限制,导致我们遇到了不少问题: 因此,目前我们的部署是分布在几台不同的设备上: 通过一系列的配置工作,我们实现了这几台设备之间的互联互通。 五、Dify 平台的实战测试:与 Open […]
智能体
1 post