今天的这个测试是因为上周用Open WebUI搭了一个简易的知识库(具体看我上周发的那篇文章),然后产品感兴趣了,再来用Dify这个相对企业级、产品级的系统来正式搭一个企业知识问答系统而做的测试。由于需求是从LLM大模型、Embedding模型、Rerank模型,以有Dify平台全套都必须是私有化部署,且不能使用Docker,全部是手动代码部署,因此,整个过程较复杂,也走了一些弯路,所以整个内容篇幅较长。为省流,直接上结论。 一、省流:关键结论速览 结论 需注意的是,Open WebUI 和 Dify 目前所使用的 embedding 模型不同,这是造成测试结果存在差异的一个重要因素。 测试体验环境 二、现状与挑战:Open WebUI 知识库的局限 前期,我们基于 Open WebUI 搭建了一个简易的知识库。但由于 Open WebUI 并非专业用于知识问答的平台,其功能较为简陋,难以满足企业级产品的知识问答需求: 针对以上种种问题,经过与两位领导的初步讨论,我们启动了对 Dify 的预研工作,期望借助 Dify 的工作流机制来解决 Open WebUI 知识库存在的这些问题。 三、Dify 的解决方案:灵活性与强大功能的结合 Dify 的强大之处在于其高度的灵活性,主要体现在智能体和工作流两个方面: 四、Dify 部署之路:挑战与进展并存 在对 Dify 的优势进行充分了解后,我们来看看当前的部署进展情况。目前,Dify 的演示环境已经搭建完成,但在使用和优化方面仍有许多工作需要进一步探索。 整个部署过程并非一帆风顺。由于没有实体服务器,我们在 AutoDL 上租用了一台虚拟机进行部署。但由于 AutoDL 虚拟机存在诸多限制,导致我们遇到了不少问题: 因此,目前我们的部署是分布在几台不同的设备上: 通过一系列的配置工作,我们实现了这几台设备之间的互联互通。 五、Dify 平台的实战测试:与 Open […]
知识库
Open-WebUI+QwQ-32B搭建本地知识库 一、概述 当用户提出一个问题时,如何让大模型准确的定位到你的输入背后真的正的问题,并输出正确的回复,是大模型应用的关键。 而要达到此目的,主要有三种方式:提示词、知识库和微调。 大模型的搭建,open-webui及RAG的启用等步骤暂先跳过,本文主要介绍并演示了本地知识库的一些关键点。 二、背景 前阵子,应产品部门的要求,对Deepseek R1 671B及QwQ-32B等大模型做了一番技术上的预研。由于前期的测试中发现,在硬件受限(单卡或双卡4090)环境下,QwQ-32B-AWQ模型的表现在并发、速度等多方向优于Deepseek满血版,并且二者在会议纪要等功能的对比测试各有优劣,因此知识库的预研和测试也优先选择了QwQ-32B-AWQ模型。 而前端平台则采用了开源的open-webui,同时RAG采用了open-webui自带的“sentence-transformers/all-MiniLM-L6-v2”向量模型。 平台 模型 备注 前端平台 Open-webui搭建的框架 github中开源项目,支持rag、对接ollama等功能 后端大模型 QwQ-32B-AWQ 自行部署的大模型,使用AutoDL上租借的服务器 向量模型 sentence-transformers/all-MiniLM-L6-v2 open-webui自带的向量库 三、影响本地知识库及响应质量的关键点 在明确了大模型(QwQ-32B-AWQ)和向量库(sentence-transformers/all-MiniLM-L6-v2)后,整个RAG应用的开发关键在于本地知识的整理和提示词的设计,在open-webui上可以看到相关的一些设定。 1. top k Top-k 采样是自回归生成(autoregressive generation)“贪心策略”的优化。原理是从概率排名最高的K个单词里随机采样。很多情况下这个随机性有助于提高生成质量。默认为前3。 2. 提示词 open-webui给出了一个样例的提示词。 这个提示词本身已经经过了许多人的检验,理论上讲应该适用于大部分的场景,但暂未在公司的使用场景下做严格测试和验证。未来我们可以在使用中观察一下,并根据实际的请求与响应来做一下各种必要的调试或调整。 3. 块参数(Chunk Params) 包括: 向量化参数块大小和块重叠的设置,这直接影响了rag检索的效果。推荐:块大小1000,块重叠为块大小的5%-10%,若发现知识丢失,可适当增加块重叠的值。 四、创建和使用知识库 创建知识库 知识库的创建步骤,如上图所示: 知识库使用介绍 知识库创建好了之后,到了主界面,在输入框里输入一下 #,你就可以看到所有你具体访问权限的知识库列表,选定你要问的知识库后,再在输入框里输入你的问题,即可针对知识库来进行问答。 五、演示环境 目前我在演示环境建了三个知识库,视讯开放平台,新员工入职培训,视讯平台API。 大家可以实际体验一下效果和准确率。 地址:http://172.16.129.127:3000 测试账号: […]
问题现象 在Open WebUI里上传一个附件,然后针对这个附件做聊天或者问答,但是返回异常。 查看后台日志,有如下报错: 问题分析 从后台的错误上看应该是save_docs_to_vector_db的embedding_functionb出错了。再具体看了一下代码应该是没的安装语义向量模型引擎sentence-transformers导致的。 解决方案 切回到前台的Open WebUI,用管理员身份登录进去。然后点右上角的“设置”,并找到“文档”,然后在该界面上点一下右这的下载的图标,如下图所示。 若下载成功了,应该就OK了。不过,实际上我这边的情况是下载失败。所以同志还要努力。继续往下走。 文档设置中下载sentence-transformers/all-MiniLM-L6-v2失败 查看后台日志,发现报错如下 从这个报错来看,应该是open_webui/retrieval/utils.py的get_model_path()在调用snapshot_download()连不上huggingface导致的。因此,我们需要再设置一下代码,翻个墙,或者设置一下huggingface的镜像站。 后台关了Open WebUI,然后设置一下代理及huggingface镜像。 设置代理 设置huggingface镜像export HF_ENDPOINT=https://hf-mirror.com 重启 Open WebUI ./start.sh 后再chat with 附件,一切正常。 以下是我的start.sh的代码: